Extensions 1→N→G→Q→1 with N=C22 and Q=S3xC14

Direct product G=NxQ with N=C22 and Q=S3xC14
dρLabelID
S3xC22xC14168S3xC2^2xC14336,226

Semidirect products G=N:Q with N=C22 and Q=S3xC14
extensionφ:Q→Aut NdρLabelID
C22:(S3xC14) = C14xS4φ: S3xC14/C14S3 ⊆ Aut C22423C2^2:(S3xC14)336,214
C22:2(S3xC14) = S3xC7xD4φ: S3xC14/S3xC7C2 ⊆ Aut C22844C2^2:2(S3xC14)336,188
C22:3(S3xC14) = C14xC3:D4φ: S3xC14/C42C2 ⊆ Aut C22168C2^2:3(S3xC14)336,193

Non-split extensions G=N.Q with N=C22 and Q=S3xC14
extensionφ:Q→Aut NdρLabelID
C22.1(S3xC14) = C7xD4:2S3φ: S3xC14/S3xC7C2 ⊆ Aut C221684C2^2.1(S3xC14)336,189
C22.2(S3xC14) = C7xC4oD12φ: S3xC14/C42C2 ⊆ Aut C221682C2^2.2(S3xC14)336,187
C22.3(S3xC14) = Dic3xC28central extension (φ=1)336C2^2.3(S3xC14)336,81
C22.4(S3xC14) = C7xDic3:C4central extension (φ=1)336C2^2.4(S3xC14)336,82
C22.5(S3xC14) = C7xC4:Dic3central extension (φ=1)336C2^2.5(S3xC14)336,83
C22.6(S3xC14) = C7xD6:C4central extension (φ=1)168C2^2.6(S3xC14)336,84
C22.7(S3xC14) = C7xC6.D4central extension (φ=1)168C2^2.7(S3xC14)336,89
C22.8(S3xC14) = C14xDic6central extension (φ=1)336C2^2.8(S3xC14)336,184
C22.9(S3xC14) = S3xC2xC28central extension (φ=1)168C2^2.9(S3xC14)336,185
C22.10(S3xC14) = C14xD12central extension (φ=1)168C2^2.10(S3xC14)336,186
C22.11(S3xC14) = Dic3xC2xC14central extension (φ=1)336C2^2.11(S3xC14)336,192

׿
x
:
Z
F
o
wr
Q
<