Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C14

Direct product G=N×Q with N=C22 and Q=S3×C14
dρLabelID
S3×C22×C14168S3xC2^2xC14336,226

Semidirect products G=N:Q with N=C22 and Q=S3×C14
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C14) = C14×S4φ: S3×C14/C14S3 ⊆ Aut C22423C2^2:(S3xC14)336,214
C222(S3×C14) = S3×C7×D4φ: S3×C14/S3×C7C2 ⊆ Aut C22844C2^2:2(S3xC14)336,188
C223(S3×C14) = C14×C3⋊D4φ: S3×C14/C42C2 ⊆ Aut C22168C2^2:3(S3xC14)336,193

Non-split extensions G=N.Q with N=C22 and Q=S3×C14
extensionφ:Q→Aut NdρLabelID
C22.1(S3×C14) = C7×D42S3φ: S3×C14/S3×C7C2 ⊆ Aut C221684C2^2.1(S3xC14)336,189
C22.2(S3×C14) = C7×C4○D12φ: S3×C14/C42C2 ⊆ Aut C221682C2^2.2(S3xC14)336,187
C22.3(S3×C14) = Dic3×C28central extension (φ=1)336C2^2.3(S3xC14)336,81
C22.4(S3×C14) = C7×Dic3⋊C4central extension (φ=1)336C2^2.4(S3xC14)336,82
C22.5(S3×C14) = C7×C4⋊Dic3central extension (φ=1)336C2^2.5(S3xC14)336,83
C22.6(S3×C14) = C7×D6⋊C4central extension (φ=1)168C2^2.6(S3xC14)336,84
C22.7(S3×C14) = C7×C6.D4central extension (φ=1)168C2^2.7(S3xC14)336,89
C22.8(S3×C14) = C14×Dic6central extension (φ=1)336C2^2.8(S3xC14)336,184
C22.9(S3×C14) = S3×C2×C28central extension (φ=1)168C2^2.9(S3xC14)336,185
C22.10(S3×C14) = C14×D12central extension (φ=1)168C2^2.10(S3xC14)336,186
C22.11(S3×C14) = Dic3×C2×C14central extension (φ=1)336C2^2.11(S3xC14)336,192

׿
×
𝔽